|
Muscular Tissue

Muscular Tissue | Tissues

Blood has a fluid (liquid) matrix called plasma, in which red blood cells (RBCS), white blood cells (WBCS) and platelets are suspended. The plasma contains proteins, salts and hormones. Blood flows and transports gases, digested food, hormones and waste materials to different parts of the body. Bone is another example of a connective tissue. It forms the framework that supports the body. It also anchors the muscles and supports the main organs of the body. It is a strong and nonflexible tissue (what would be the advantage of these properties for bone functions?). Bone cells are embedded in a hard matrix that is composed of calcium and phosphorus compounds. Two bones can be connected to each other by another type of connective tissue called the ligament. This tissue is very elastic. It has considerable strength. Ligaments contain very little matrix. Tendons connect bones to muscles and are another type of connective tissue. Tendons are fibrous tissue with great strength but limited flexibility. Another type of connective tissue, cartilage, has widely spaced cells. The solid matrix is composed of proteins and sugars. Cartilage smoothens bone surfaces at joints and is also present in the nose, ear, trachea and larynx. We can fold the cartilage of the ears, but we cannot bend the bones in our arms. Think of how the two tissues are different! Areolar connective tissue is found between the skin and muscles, around blood vessels and nerves and in the bone marrow. It fills the space inside the organs, supports internal organs and helps in repair of tissues. Where are fats stored in our body? Fat- storing adipose tissue is found below the skin and between internal organs. The cells of this tissue are filled with fat globules. Storage of fats also lets it act as an insulator. 6.3.3 MUSCULAR TISSUE Muscular tissue consists of elongated cells, also called muscle fibres. This tissue is responsible for movement in our body. We can move some muscles by conscious will. Muscles present in our limbs move when we want them to, and stop when we so decide. Such muscles are called voluntary muscles [Fig. 6.11(a)]. These muscles are also called skeletal muscles as they are mostly attached to bones and help in body movement. Under the microscope, these muscles show alternate light and dark bands or striations when stained appropriately. As a result, they are also called striated muscles. The cells of this tissue are long, cylindrical, unbranched and multinucleate (having many nuclei). The movement of food in the alimentary canal or the contraction and relaxation of blood vessels are involuntary movements. We cannot really start them or stop them simply by wanting to do so! Smooth muscles [Fig. 6.11(b)] or involuntary muscles control such movements. They are also found in the iris of the eye, in ureters and in the bronchi of the lungs. The cells are long with pointed ends (spindle-shaped) and uninucleate (having a single nucleus). They are also called unstriated muscles - why would they be called that? The muscles of the heart show rhythmic contraction and relaxation throughout life. These involuntary muscles are called cardiac muscles [Fig. 6.11(c)]. Heart muscle cells are cylindrical, branched and uninucleate. Compare the structures of different types of muscular tissues. Note their shape, number of nuclei and position of nuclei within the cell. 6.3.4 NERVOUS TISSUE All cells possess the ability to respond to stimuli. However, cells of the nervous tissue are highly specialised for being stimulated and then transmitting the stimulus very rapidly from one place to another within the body. The brain, spinal cord and nerves are all composed of the nervous tissue. The cells of this tissue are called nerve cells or neurons. A neuron consists of a cell body with a nucleus and cytoplasm, from which long thin hair-like parts arise (Fig. 6.12). Usually each neuron has a single long part, called the axon, and many short, branched parts called dendrites. An individual nerve cell may be up to a metre long. Many nerve fibres bound together by connective tissue make up a nerve.

Chapter

In-Chapter Exercises

Back Exercise

Quick Review

Live-Sessions

image/svg+xmlLayer 1

Introduction

image/svg+xmlLayer 1

Reflection of Light

image/svg+xmlLayer 1

Spherical Mirrors

image/svg+xmlLayer 1

Refraction of Light

image/svg+xmlLayer 1

Revision